
Balise manual
François Guillet

Copyright © 2004-2005

Copyright © 2004-2005 by François Guillet. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation ; with no Invariant Sections, with no
Front-Cover Texts, and with no Back-Cover Texts.

Table of Contents
Installation ... 1
Getting Started ... 2
Balise Windows .. 12

The Widget Palette .. 12
The Editing Window .. 13
The Edited Window ... 19
The Clipboard Window .. 19

Balise File & Projects .. 20

Installation
First, download and install Buoy if it is not already installed on your system. Next, untar the Balise
zipped tar archive (.tgz) where you want to install it. Balise saves files between different sessions in a
folder chosen by the user. A sample folder is provided in the folder named BaliseFiles, which can
be found in the Balise root directory. You may either keep this BaliseFiles folder where it is and
use it, use a brand new folder anywhere else or copy the BaliseFiles folder anywhere you want.
However, note that the default BaliseFiles folder clipboard files contain useful widgets like OK
and Cancel buttons.

A standalone instance of Balise is launched using the following command, current path in Balise root
directory:

java -cp /path_to/Buoy.jar:Balise.jar balise.Balise (Linux)

java -cp C:\path_to\Buoy.jar;Balise.jar balise.Balise (Windows)

Alternatively, you can attach a balise editor window to any WindowWidget instance using the following
call in your source code :

window = new BFrame("a window");

setContent(new BorderContainer());

[...]

WindowEditor we = new WindowEditor(window);

Please note that the edited window must have at least one widget container set as content.

The first time Balise is launched, it asks for the location of the Balise files folder. Choose any location

1

that suits you, as indicated above. You will be able to change that location any time afterwards. If Balise
crashes right after setting the files location, relaunch it (and keep me informed !). If you choose after-
wards a new location to store balise files, you will loose memory of Balise preferances, windows loca-
tions and sizes as well as permanent widgets in the clipboard.

Getting Started
In order to illustrate how an interface is built using Balise, we will build a classical "Grid properties"
dialog, such as the one that can be found that sets the Explicit Container Grid properties. This dialog is
shown in figure Figure 1. This diagram also shows all the widget containers and the widgets this dialog
consists of. The root level of the dialog content is a column container. Here are the different items that
are contained within this column container, from top to bottom:

• An outline that encloses a grid, which itself contains in each of its two cells a set of one label and
one spinner to set the horizontal and vertical grid spacings.

• A grid also made of two cells, one cell for the Show Grid check box and one cell for the Snap to
Grid check box.

• The usual OK and Cancel buttons.

Launch Balise using the command given in the installation section. You should see two windows, the
widget palette and the clipboard.

The widget palette mainly consists in a tabbed pane that show two tabs, a widget tab and a widget con-
tainer tabs. The content of these two tabs is shown in figure Figure 2 and Figure 3. Select one of these
buttons to determine the type of the next widget that you will add in your interface. The currently selec-
ted widget is shown in the bottom right corner of the widget palette. There is only one instance of this
window, whatever the number of window widgets currently being edited. For this reason, the widget
palette can also be seen as Balise main window. New windows are loaded or created using the widget
palette Window menu. Using this menu, you can choose to create a new window (or dialog) or load an
XML definition of a WindowWidget. If the widget described in the XML file is not a window, Balise
will create a window and set the widget as its content (or menu bar if the loaded widget happens to be a
BMenuBar).

The clipboard holds the items you copied or drag'n'dropped into it (which amounts to the same). There is
much to say about the clipboard, which also acts as a provider for standard or favorite widgets: be sure
to read the section about the clipboard.

The first thing to do is to create a new dialog using the command Create new BDialog from the Window
menu of the widget palette. An empty dialog appears, along with an editor window. Both should look as
shown in figure Figure 4. The widget and widget container hierarchical structure is mirrored in the wid-
get tree on the left side of the editor window. Selecting a widget in this tree also selects this widget for
editing purposes. The browser-like navigation button at the top of the window allows to recall recently
edited widgets (left and right arrows), edit the parent widget container of the currently selected widget
(up) or go straight to the content widget (home). Most of the edition process takes place at the left (or
more appropriately center) part of the editor window which consists of a tabbed pane.

By default, a newly created window displays a border container as content (this is a fairly common situ-
ation). Balise always assumes that a window is not empty : you cannot delete the content widget. You
may switch it to another widget container type, paste a widget in place of the content widget, embed the
content widget in another widget container, etc., but you cannot delete the content widget. Given all the
possibilities you have to modify the content widget, this was not deemed necessary. The contents of the
default border container are shown in the Contents tab. A set of buttons or thumbnails depicts the current

Balise manual

2

state of the border container. Whenever a position (CENTER, NORTH, etc.) is occupied by a widget,
the button turns green. More about these buttons later : for the time being, the content widget should be
a column container, not a border container. Select Column in the combo box at the bottom right of the
content tab, and click on the switch button. Watch the widget tree: it should now state ColumnContain-
er1 as being the content widget. The Contents tab now shows only one button.

It's high time we start to fill the content widget. The top widget is a BOutline, but we will skip it for
educational purposes (let's pretend we forgot about that one). What we need is then a grid container. Se-
lect the Widget Containers tab in the widget palette and then select the GridContainer button. Next, click
on the red button in the Contents tab of the editor window. A grid container widget should now be at-
tached to the column container in the widget tree, and the editor window should look as the window
shown in figure Figure 5.

Figure 1. Diagram of the Grid properties dialog structure

Balise manual

3

Figure 2. The widget palette, Widget tab

Figure 3. The widget palette, WidgetContainer tab

Balise manual

4

Figure 4. The editor window

Figure 5. The editor window : grid container editing

You should notice a newcomer in the right part of the editor window: a set of navigation buttons has ap-
peared. These buttons allow to quickly select (and edit) any other child of the column container widget
(the grid container parent widget). The 'up' button here labeled ColumnContainer1 also allows to edit the

Balise manual

5

column container itself. The button labeled New Navigator allows to get a copy of this set of buttons in a
standalone windows. If you have a major or often used widget container in your GUI component, you
can ask for a detached navigator and then easily recall any child of this widget container (or the widget
container itself). Last but not least, another way of selecting a widget is simply to click on it in the edited
window. A black frame will outline the widget to show it has been selected. If you click several times in
a row (within 0.7s to be precise -no need to hurry !-), say n times, the nth-1 parent widget container of
the clicked widget will be selected instead of the widget itself. This way, parent widgets can be selected
even if they do not provide a 'clickable' space because their children take up all the available space.

The grid container editor Contents tab shows more items than the border container editor did. The width
and the height of the grid container can be set using the two relevant spinners. A check box allows to
resize the grid in a 'safe' mode, where any downsizing that will cause the loss of at least one widget will
trigger user confirmation through a dialog. Another feature concerning grid shrinking is that 'lost' widget
will be retained as much as possible in the new layout. For example, suppose a 3x3 grid has a child at
(3,3), and it's shrunk to (2x2). If the (2,2) position is unoccupied, the widget at (3,3) will be sent to (2,2)
prior to shrinking. The user has to manually delete this widget if he does not need it anymore. If there is
no way the (3,3) widget can be kept it is simply discarded (safe mode disabled) or the user is asked to
confirm deletion (safe mode enabled).

The grid container navigator (the set of buttons on the right) identifies the grid children using numbers
instead of widget names. This is because using names for a grid layout can use more space than reason-
able for a navigator. Numbers make shorter buttons, although they make child widget anonymous.

Back to the tutorial : we need two horizontal cells (one row, two columns), so set the width to two. Each
of the cell will be occupied by a row container, so choose the RowContainer button in the widget palette
and click on the first red button of the grid container editor. The row container editor looks a lot like the
column container editor, so there is nothing more to point out.

We now have to add a label and a spinner to the row container. Get back to the widget palette and select
the BLabel button. Click on the red button of the row container editor. The editor window should now
look like figure Figure 6. This time, no Contents tab is seen in the tabbed pane: a label is a Widget,
not a WidgetContainer, and has no content (child widgets). The Properties tab allow to set the
properties of the label, more or less from the most useful to the most seldom used ones. The most im-
portant property, of course, is the text of the label. Enter X: in the text field. You don't need to modify
the name of the widget because you won't need to access the label (as a variable) at run time. Otherwise,
it is a good idea to give a widget a more meaningful name than just 'Label1'.

Get to the parent row container, either using the up arrow in the browser-like set of nav buttons at the
top of the editor window, the RowContainer1 button of the navigator at the right or pressing the up ar-
row key. You should now see that the Contents tab shows two buttons instead of one : one green and
one red. The green button identifies the label that has been added. The red button identifies an empty po-
sition where widget addition takes place. The row container editor, the column container editor and
some other like explicit container editor show a "trailing" empty button where widgets may be added.

Select the BSpinner button in the widget palette and add a spinner through clicking the empty button.
The spinner editor window a bit complex because a spinner may use integer values, double values, a list
of predefined values, or dates. The default integer spinner is exactly what we need : we just have to set a
minimum value of 1 (a zero grid spacing means trouble!) and a maximum value of, say, 1,000. The cur-
rent value can reasonably be set to 5 (the program will probably set this value to the real value after
loading the GUI, anyway). Tip: the spinner might calculate its width from its initial value. A value of 5
means that the spinner might be quite narrow and display only one figure (5). A trick is to use a 2 or 3
figure initial value (like 100) to force the spinner show 2 or 3 figures and have the program set the cor-
rect value after loading and packing the interface. This time, it's best to give the spinner a meaningful
name like xSpinner or XSpinner.

Let's get back to the GridContainer. Instead of going through the process of creating another row con-
tainer with its label and spinner, we will simply copy the row container and paste it in the second cell.
Select the first green button not by clicking on the button but on the frame around the button. The frame

Balise manual

6

should now be outlined in light purple as shown in figure Figure 7. Copy the button using Copy from the
Edit menu (or its Ctrl-C shortcut), or drag the button using the blue square and drop it onto the clip-
board, using the Ctrl key to avoid deleting the widget as it is copied. The edit menu shortcuts also work
in the edited window. A new item should appear in the clipboard, as shown in figure Figure 8 (actual
widget location may vary). The green frame around the copied widget means that it is selected and that
it is a non persitent item. Non-persistent item are discarded when Balise quits. Persistent items are dis-
played with an italic face and show a red frame when selected. They are kept between different Balise
sessions. If there is a particular widget you often use (like the OK and Cancel buttons provided in the
buttons tab), copy it to the clipboard and make it persistent. New tabs can be added to the clipboard for
widget identification.

Figure 6. Editor window : label editing

Figure 7. Editor window : Selecting a content button

Now select the second red button of the grid container and paste the copied widget, or alternatively drag
it from the clipboard onto the red button. If you use plain drag and drop, the widget will be deleted from
the clipboard. As before, hold down the Ctrl key if you want to prevent the widget from being deleted
(this is not useful here since it is unlikely that the row container will be reused). Edit the newly created
label and spinner and set the label text to Y: and the spinner name to YSpinner. The edited window
should now look as figure Figure 9.

Balise manual

7

Figure 8. The clipboard after selecting the row container

Figure 9. The edited window after completing grid edition

Get back to the main column container, select the GridContainer widget container in the widget
palette and add a grid container at the bottom of the column container (bottom red button). Make this
new grid 2 cells wide and add a BCheckBox in each of the cell. If you want to add several widgets in a
row whithout automatically selecting them as they are created, hold down the Ctrl key while selecting a
red button. Set the text of the first checkbox to Show Grid and the text of the second checkbox to Snap
to Grid. Name the two checkboxes as you wish, e.g. ShowGridCB and SnapCB. The resulting window is
shown in figure Figure 10.

Figure 10. The edited window after adding the two checkboxes

The next step consists in adding the OK and Cancel buttons. For illustration purposes, we will suppose
that you used the sample folder supplied with Balise as Balise Files folder, in which case the clipboard
definition contains a persistent GridContainer with these two buttons. Drag this grid container in the
empty red button of the column container. Note that persitent clipboard items are not deleted after being
dragged and dropped, whereas non-persitent items are deleted if the Ctrl key is not held down during

Balise manual

8

the process. The names and texts as copied from the clipboard are just what we want, so there is no need
to edit them. The edited window should look as shown in figure Figure 11.

Figure 11. The edited window after adding the OK and Cancel buttons

The basics of the grid properties dialog are there, but there is obviously a need for additional layout...
First, the top grid should be outlined. Select the top grid, select the outline container in the widget
palette and select the Embed in Container menu item in the Edit menu of the editor window. The grid is
now embedded in an outline container. Select the Properties tab of the outline container editor, which is
fairly complex due to the many possibilities offered by Swing in terms of borders. For the time being,
select a Title border and enter Grid Spacing as title text. It is also a good idea to specify a different lay-
out for the outline widget than the column container default layout. Go to the Layout tab. Since the out-
line container layout corresponds to its parent default layout, the layout parameters widgets are disabled.
Select the Create Layout button : a layout is created and the parameters widgets are now enabled. Keep a
CENTER layout, select an HORIZONTAL fill and enter (3, 3, 3, 3) as layout insets, as shown in figure
Figure 12. Similarly, select the grid container that contains the two checkboxes and create a new layout.
Specify a CENTER layout with a NONE fill type. Finally, select the buttons row container and specify a
CENTER layout, NONE fill type and (10, 0, 5, 0) insets (10 and 5 corresponds to top and bottom val-
ues).

Figure 12. The outline layout

All there is now left to do is to specify a title for the dialog. Select the Window properties menu item
from the Window menu of the editor window. Enter "Grid Properties" as window title and deselect the
Resizable check box if you wish (see figure Figure 13). Please note that the modal setting is ignored at
this time. You can test how the window behaves by selecting the Set Run Time Mode menu item in the

Balise manual

9

Edit menu of the editor window. In this mode, widget selection is ignored. You can also have limited in-
teraction with the edited window widgets in Edit mode if you keep the Ctrl key pressed while selecting
a widget with the mouse. This feature is not equivalent to interacting with the edited window in run time
mode, but it allows for example selection of a tabbed pane tab.

Figure 13. The window properties window

Though it's not mandatory, it's best to create interfaces within the context of a project. Projects are ex-
plained in detail later on. For now, let's just say a project is a directory structure that holds buoy inter-
faces files, images used in these interfaces and balise specific files. To associate a project to an interface,
select the New Project command from the Project menu. This command first asks to save a project file
and then opens the project settings window as shown below. It is recommended that the files are organ-
ized the way the description of which follows (though it is perfectly possible to use another design). A
root folder (say foo) contains three subfolders :

• BaliseFiles

• Images (or Icons)

• Interfaces

The first folder will contain Balise specific file such as the project and interfaces files. It is recommen-
ded that project files use .bpr extension whereas interface files should use .bui extension.

The second folder will hold images used by widgets. These resources are external and are not stored in
the interface definition files.

The third folder will contain buoy xml files which are updated each time a balise files to which a project
is associated is exported. If you don't use a project when editing an interface file, then you must manu-
ally export the buoy file.

These folders are set in the Project Settings edit window :

Balise manual

10

Figure 14. The Project Settings Edit Window

The root path is the location of the foo folder relative to the BaliseFiles folder where the project is
saved. The other two are straightforward.

The final stage is actually saving the balise file and use the buoy interface in your program. There are
two ways you can do that :

• save the content widget, declare a class that extends BDialog, load the content widget definition file
in the constructor and set it as the dialog content.

• save the whole dialog and load it anywhere in your source code.

If you choose the first option, check Save = Export Content Container in the Window menu. If you
choose the second option simply leave this option unchecked. It is also possible to prototype a single se-
lected widget or widget container using the Prototype Widget Code command. In this tutorial, we will
assume you chose to save the whole window. Balise helps you write the code to load the window from
its definition file : select the Prototype Window Code menu item from the Window menu of the editor
window. The following prototype code is displayed. You can copy any part of it and incorporate it in
your source code. Balise does not manage or modify any of your source code file (and probably never
will, I don't like much prototyping). This prototyped text just saves typing when designing or modifying
a GUI. It is possible to specify in each widget properties window if a widget should appear in the proto-
typed code.

InputStream inputStream = null;
try
{

inputStream = new FileInputStream(new File("Interfaces/test.xml"));
WidgetDecoder decoder = new WidgetDecoder(inputStream);
BDialog window = (BDialog) decoder.getRootObject();
ColumnContainer columnContainer1 = ((ColumnContainer) decoder.getObject("ColumnContainer1"));
BOutline outline1 = ((BOutline) decoder.getObject("Outline1"));
GridContainer gridContainer1 = ((GridContainer) decoder.getObject("GridContainer1"));
RowContainer rowContainer1 = ((RowContainer) decoder.getObject("RowContainer1"));
BLabel label1 = ((BLabel) decoder.getObject("Label1"));
BSpinner xSpinner = ((BSpinner) decoder.getObject("XSpinner"));
RowContainer rowContainer1 = ((RowContainer) decoder.getObject("RowContainer1"));

Balise manual

11

BLabel label1 = ((BLabel) decoder.getObject("Label1"));
BSpinner ySpinner = ((BSpinner) decoder.getObject("YSpinner"));
GridContainer gridContainer1 = ((GridContainer) decoder.getObject("GridContainer1"));
BCheckBox showGridCB = ((BCheckBox) decoder.getObject("ShowGridCB"));
BCheckBox snapCB = ((BCheckBox) decoder.getObject("SnapCB"));
RowContainer rowContainer3 = ((RowContainer) decoder.getObject("RowContainer3"));
BButton okButton = ((BButton) decoder.getObject("okButton"));
BButton cancelButton = ((BButton) decoder.getObject("cancelButton"));
window.pack();
window.setVisible(true);

}
catch(IOException ex)
{

ex.printStackTrace();
}
finally
{

try
{

if (inputStream != null)
inputStream.close();

}
catch(IOException ex)
{

ex.printStackTrace();
}

}

Balise Windows
The Widget Palette

At first glance, the widget palette job is to allow choosing between different widgets or widget contain-
ers. However, it is also the Balise key window and does more than just widget type selection. A widget
palette singleton is shared among instances of editor windows: for this reason all editor windows inde-
pendant functions have been placed in the widget palette. The widget palette is thus used to access user
preferences and Balise about box.

The widget palette content is straighforward : each widget class is associated to a button. When a button
is clicked, the associated widget class becomes the current class for all "widget addition" operation. The
currently selected widget icon is draw at the bottom right corner of the widget palette.

Window menu items:

New Frame Creates a new BFrame and opens it for edition.

New Dialog Created a new BDialog and opens it for edition.

Open File... Asks the user to choose a Balise file.

Import Widget... Asks the user to choose a buoy definition file. If the root widget
is not a frame or a dialog, then the widget is embedded in a
BFrame.

Quit Do I really need to tell you? Warning, though : Balise does not
warn for modified files before quitting.

Balise manual

12

Preferences menu items:

Select Balise Files Folder Allows the user to choose the folder where
all Balise persistent files will reside. This in-
cludes properties as well as persistent items
in the clipboard.

Select Icons Default Folder Sets a default folder to choose icon from.
This folder is not to be confused with
projects image or icons folder. It is just the
folder that will be selected by default when
choosing an image for an icon.

Help menu items:

Only the "about" dialog is available at the moment.

The Editing Window
The editing window is the window where widget properties and layouts are modified.

This window displays four areas (see figure ???).

At the top, a navigation bar allows to navigate (recall) among the previously selected widgets, much like
a browser. Left and right arrows will select widgets according to the selection history. The up arrow will
select the parent of the currently selected widget, if possible. The home icon will select the content wid-
get.

On the left, a tree allows to select the widget being edited. The tree root is usually the content widget of
the widget. A second node appears at root level if the edited window has a menu bar (as is the case in
the example shown in the figure).

A tabbed pane at the middle of the window allows to set properties and layout of the selected widget. If
this widget is a container, then it is also possible to set its content using the Contents tab. More about
this later on.

A Navigator section is displayed at the right of the window. This section appears only when the parent
of the selected widget is a container widget. In this case, one often wants to select a neighbor widget,
like if one is currently editing the center widget of a border container and then wants to edit the north
widget. The navigator displays several buttons which will directly select a given child widget of the par-
ent of the selected widget. The buttons layout reflects as much as possible the parent widget children
layout.If you find yourself constantly referring to a particular parent widget, you may want to detach a
navigator to have it constantly at hand. To do so, click on the New Navigator button. Finally, the button
just under the Up to: label will select the parent widget.

Balise manual

13

Figure 15. The different areas of the editing window

The Contents edit panel

The figure Figure 16 shows the content panel of a 2 by 2 grid container. There are four thumbnails
showing the four 'slots' of the grid. The grid has only one child in the 0,0 element. The thumbnail is
green to show that this slot is occupied by a child. Its handle at the top left corner is enabled, meaning
that this widget can be dragged around the grid or into the clipboard. All other thumbails show a hollow
red sqare which means that they are empty. When an occupied slot is selected, it is surrounded by a
green square whereas an empty slot is surrounded by a purple square when selected.

Balise manual

14

Figure 16. The content panel for a 2 by 2 grid container

There are different ways to add a widget to a container.

1. Select the type of the widget to add in the widget palette. Click on the empty thumbnail where you
want to place the new widget. The newly created widget is automatically selected, unless the Ctrl
key was hold down during operation, in which case the new widget is not selected. This way, sever-
al widgets can be successively created.

2. Drag a widget from the clipboard. If the widget is not persistent, it will be erased from the clip-
board, unless the Ctrl key has been held depressed during operation.

3. Paste (Ctrl-V) the currently selected item in the clipboard in the selected empty slot. Selected clip-
board item is not discarded even if it is not persistent.

Widgets can be moved around in the container using the blue drag handle. When the target slot is
already occupied, behavior slightly depends on the widget container type. For row and column contain-
ers, widgets are swapped. For fixed or length specified content container such as border or grid contain-
ers, a dialog asks if you want to erase target widget or swap the two widgets.

Widgets can be copied to clipboard as usual, but they can also be dragged to the clipboard. If the Ctrl
key is held down in the process, a copy is put in the clipboard and the original widget is not deleted.

Sometimes, one wishes to transform a widget container belonging to this group: border, column, row,
grid, form, into another container type of the same group, e.g. from grid to form. The content editor dis-
plays a button at the top right labeled Switch to. Selecting this button will transform the edited widget
into a container of the type specified in the combo box next to the button. Container content is preserved
as much as possible.

Balise manual

15

Some features are specific to each kind of content editor. They are discussed below.

Grid Container and Form Container The width and height are specified using
two spinners at the top left of the panel.
When the safe mode check box is enabled, it
is not possible to downsize a grid or a form
if in doing so a widget is deleted. The user is
asked to confirm deletion before setting the
new size.

Row and Column Container There is always an empty slot at the right/
bottom of the container. This slot is virtual
and exists only to provide a means to further
addition of child widgets to the container.

Form Container Thumbnails have an orange handle at the
bottom right corner. This handle is used to
set the horizontal and vertical extension of
the widget. The row and columns weights
can also be set using the relevant spinners in
front (resp. at the top of each row (resp.
column).

The Properties edit panel

Since each widget has more or less its own properties, we won't go through the process of describing
each property for each widget type. However it is to be noticed that for widget containers that uses a de-
fault layout, this layout is listed in the widget properties. Modifying the default layout will affect all
child widgets which don't make use of a specific layout.

As for the content edit panel, there are some features which are particular to a specific widget. These are
discussed below.

BTree node insertion BTrees node properties can only be edited when a
node is selected in the edited window. For example, to
add a node to a BTree, first select the node in the ed-
ited window, either through using Ctrl click or enter-
ing run-time mode. The node properties then become
enabled and it is possible to add a node to the selected
node.

The Layout edit panel

This panel is used to specify a layout for the selected widget with regards to the parent widget. If no spe-
cific layout is given, then the parent widget default layout is used. Do not confuse this specific layout
with the default layout setup in the properties edit panel. The default layout affects the widget container
child widgets layout whereas the layout specified in this panel affects the way the widget container itself
is laid out.

Underneath the layout section, choices specific to the parent container of the edited widget allows to
choose the placement of the widget within the parent widget (if relevant). It is however best to use the
content panel of the parent widget for this purpose and this feature is mainly for occasional use.

Balise manual

16

Menus

Edit menu items:

Cut/Copy/Paste/Clear As usual. The content widget is the only
widget which can't be deleted. To change
the content widget into anything else than
the default border container, use the Switch
to: button.

Remove Container, Keep Child When a widget container is selected, select-
ing this command removes it from the wid-
get tree. Its first child made child of the wid-
get container parent widget at the place it
previously occupied.

Embed in Container A widget of the kind selected in the widget
palette is created and positionned at the
place occupied by the selected widget,
which in turn is made first child of the
newly created container. This command can
be used to outline a widget on the fly, for
example.

Export Frame as XML... Exports edited frame as a buoy xml file

Export Selected Widget as XML... Exports the currently selected widget ias a
buoy xml file.

Save as / Save Saves the edited window into a balise inter-
face definition file. If a project is associated
to the file, the frame (or content container if
Save = Export content container is checked)
is also exported as a buoy interface defini-
tion file.

Set Run Time Mode Default interaction with edited window con-
sists in selecting widgets with the mouse
(see section the section called “The Edited
Window”). If run time mode is enabled, the
edited window acts as a normal window, i.e.
it behaves as it does as run time. This mode
can be toggled back to edit mode.

Window menu items:

Add a Menu Bar / Remove the Menu Bar Menu bars cannot be added in a container
empty slot. They must be added to a win-
dow/dialog using this command. If the ed-
ited window already has a menu bar, then
this command removes the menu bar from
the window.

Window properties This command triggers a dialog which al-

Balise manual

17

lows to specify the window title, if the win-
dow is resizable and initially visible. For ob-
vious reasons dialogs can't be made modal at
design time. It is mandatory to call:

setModal(true)

at run time before making the dialog visible.

Prototype Window Code.../Prototype Widget Code... This command brings a window in which is
displayed the typical code used to load the
interface (selected widget or whole win-
dow). The code is prototyped according to
different options. Variables can be stated as
local (on the fly definition) or global (e.g.
class scope definition). Variables definition
can be stated as private, protected,
etc. Finally, the prototype code can either
load the interface from a file that resides on
a filesystem (local or network) or from with-
in the jar file from which the class code has
been loaded (in which case the code uses the
class ClassLoader to load the interface file).

Prototyped code is a feature intended for
quick paste into source code. This code is
not managed by Balise. Do what you want
with it! Do not forget to change the default
xxx.xml filename to the actual file name.

Explicit Container Grid... Explicit Containers are the only case where
child widgets are placed in the container us-
ing the mouse in the edited window. A grid
can be used to align child widgets. Grid size,
Snap to Grid and Show Grid options are set
using this command.

Save = Export Content Container If this item is checked, a Save command
does not save the whole window but rather
the content container. Useful if you build
your windows or dialogs this way:

public class AWindow extends BFrame
{

public AWindow()
{

super("My Window");
try
{

WidgetDecoder decoder = new WidgetDecoder(getClass().getResource("awindow.xml").openStream());
setContent((BorderContainer) decoder.getRootObject());

}
catch (IOException ex)
{

ex.printStackTrace();
}
pack();
setVisible(true);

Balise manual

18

}
}

Project menu items:

New Poject... Creates a new project file to be associated to the edited interface.

Set Project... Allows to choose an existing project file to associate to the edited in-
terface.

Edit Project Allows to change projects parameters, i.e. paths.

The Edited Window
The primary purpose of the edited window is to show the resulting layout of the GUI. Widgets can be
selected using the mouse. Parent widgets selection is usually indirect, simply because many parent wid-
get do not display an area in which to click. However, clicking several times in a given widget select its
parents. Two clicks in a row select the parent widget, three clicks select the parent of the parent widget,
etc.

Widgets cannot be moved around in the edited window. Layout is solely ruled by widget hierarchy, the
types of containers used and the LayoutInfos used to lay out the widgets. The only exception to this rule
is the ExplicitContainer widget for which child widgets can be placed within the container dragging
them with the mouse.

It is sometimes necessary to interact with the widgets themselves rather than just select them. Occasional
interaction can be achieved using Ctrl clicking. In this case, the Ctrl modifier is removed from the
event which is forwarded to the widget. This way it is for example possible to interact with a BTree in
order to select a node to access its properties in the editing window contents panel. In some cases, the
Ctrl click is enough, if only because one wants to Ctrl click on the widget itself. It is then possible to
enter run time mode in which the window behaves as usual. It is then no longer possible to select wid-
gets in the edited window and the widget tree of the editing window must be used.

The Clipboard Window
The clipboard has to purposes:

• Store temporary widgets which have been copied to the clipboard

• Store persistent widgets which will act as templates to be pasted from the clipboard

The term temporary/persistent refers to a Balise session.

Each time a widget is copied, it appears in the clipboard as if it had been dragged there. Every sub-
sequent copy commands create other copies of the selected widget(s) in the clipboard. The last copied
widgets is framed in green to show that it is the currently active widget in the clipboard. Every paste
command will paste a copy of this active widget. Alternatively, a widget can be dragged from the clip-
board to a widget container content panel. It will then be deleted from the clipboard unless the Ctrl key
has been depressed during operation.

Balise manual

19

To avoid the clipboard being flooded by copied widgets after a certain time, a maximum number of tem-
porary widgets can be specified. The default is five. This number is a maximum number per category
(more about categories later on).

In addition to these temporary widgets, there are persistent widgets which are framed in red when selec-
ted and whose names are displayed in italic. These widgets are kept from session to session. They are
not deleted when dragged from the clipboard to a widget container content. The purpose is to have a
stock of persistent template widgets which can be used when needed.

Categories: since it is intended that several persistent widgets may reside in the clipboard, it is possible
to spread widgets over categories that are accessed using the tabs of the tabbed pane. After installation,
there is only one category named Misc. Categories can be added as needed and widgets sent from one
category to another.

Clipboard menu items:

Add a new tab/Remove current tab/Rename current tab As they command name says. I might re-
name 'tab' to 'category' in next version.

Delete Widget Deletes currently selected widget. Please
note that multiple selection in the clipboard
is not allowed and widgets must be deleted
one by one, except when using delete all
widgets.

Empty Clipboard Deletes all temporary widgets in the current
category.

Max Number of Items... Allows to enter the maximum number of
items a categiry can hold. When the clip-
board is full, the oldest widget is removed
when a new widget is copied (FIFO).

Item menu items:

Set Persistent/Set Temporary Toggles the persistent character of a widget.

Send Widget to Tab Allows to send the selected widget to anoth-
er category.

Balise File & Projects
Since version 1.1, Balise files and data are organized according to projects. This feature is made neces-
sary by the fact that some files (e.g. icon images files) need to be accessed at edit time by Balise and at
run time when the interface is loaded in a totally different context (e.g. jar files). A project defines three
directories:

• The project root folder. This folder mimics the path structure that will be used at runtime. That is
to say that the root subfolder tree at edit time will correspond to the directory structure at run time.
Let's suppose a user named john develops an application which is contained in a jar file. The jar file
contains two directories, images and interfaces (one folder for images, one for storing the xml
buoy interfaces). Let's also suppose that the root folder for this project is set to /
home/john/application. The icon images files are stored in /

Balise manual

20

home/john/application/images and interface files in /
home/john/application/interfaces.

• The images folder. The purpose of the images folder, as explained in the exemple above, is to place
every image used by the interface in location that will be accessed at edit time as well as run time.
Whenever an image icon is set (e.g. in a button), the image file is copied into this directory if it does
not originate from it. At run time, the WidgetDecoder in charge of the interface expects images
to be available in ./images, whether the application is run from a jar file or not.

• The interfaces folder. This is the place where Balise exports buoy interface files. In previous ver-
sions (1.0x), Balise worked directly on buoy interface files. However, this prevents adding Balise
specific information in the interface file. As of 1.1, Balise uses its own file format to store interface
definition. Balise files can not directly be used by buoy WidgetDecoder. However, each time a
balise file is saved, the corresponding buoy interface file is also saved in the interfaces directory. An-
other benefit from this design is that the prototyping mechanism now knows where the interface is
and you no longer need to modify the interface file name in the prototyped code.

Projects are set and edited using the Project menu of the edit window. It is recommended that they use
the .bpr extension.

Interface definition files are standalone balise files. As compared to buoy interface files, they contain ad-
ditional information, such as which widget is to be prototyped and which is not. Of course, they also
contain the whole buoy interface. If you associate a project file to an interface definition file (which
strongly recommended), then each time you save the interface, the plain buoy xml definition file will
also be exported with the same name in the interfaces folder. An advantage of having buoy interfaces
stored in interfaces folder is that the file name is specified in the prototyped code. The same project can
be used for several interfaces, but you must have one project each time the folders where you place in-
terfaces and images change. The trade off is that once saved project files and balise files must not be
moved. If a balise file is moved, then the project must be edited so that the location of project relative to
balise file is correct. If you move a project file, then edit the project to set correctly the root folder and
reset the project file location in every balise file that points to this project file.

Balise manual

21

